Improvement Upon a Division
Program by Leventhal

he purpose of this paper is to give

an improvement in timing, without

affecting memory requirements
and by changing only two instructions,
in a 16-bit-by-8-bit division program for
the 6502, due to Leventhal (Ref. 1, pp.
8-15).

The original algorithm is reproduced
in Figure 1. It assumes that the 16-bit
number in hexadecimal locations 40 and
41 (with bytes reversed, as usual) is being
divided by the 8-bit number in location
42 to produce a quotient in location 43
and a remainder in location 44. All quan-
tities are unsigned, but the leftmost bit of
location 41 and the leftmost bit of loca-
tion 42 are both assumed to be zero; this
would be the case if the division were ori-

by W.D. Maurer

W. D. Maurer, George Washington Univer-
sity, S.E.A.S., Washington, DC 20052.

ginally a signed division and the absolute
values of the signed quantities had been
taken. Overflow and division by zero are
not checked.

The improvement is concerned with
eliminating the INC instruction. Notice
that INC adds one to the quotient, thus
setting the current bit of the quotient to
1. If the INC is not done, the current bit
of the quotient is zero,

Notice, however, that if INC is exe-
cuted, SBC has just been executed, and
this subtraction has produced a non-
negative result. Hence the carry bit will
be equal to 1. On the other hand, if INC
is skipped, by branching on carry clear to
CHCNT, then the carry bit will be equal
to zero.

Hence, in either case, the carry bit
will be equal to the current bit of the
quotient. This will be true at CHCNT,
and therefore also at DIVID when we go
back to the start of the loop, so that the
bit can be rotated into the quotient by

changing the ASL $43 to ROL $43 at this
point.

The last time through the loop, the
final bit of the quotient will still be in the
carry bit, so that an extra ROL $43 is
necessary immediately following the
BNE. The two instructions changed are
therefore:

(1) Change ASL $43 to ROL $43.

(2) Eliminate INC $43 and put an-
other ROL $43 between BNE
DIVID and STA $44. (All of the
four instructions above have the
same length, so that the memory
requirements of the program are
not affected.)

Note that the first time through the
loop, the ROL at DIVID inserts a non-
sense bit into hexadecimal location 43.
This nonsense bit is then rotated all the
way through this location and becomes
the final value of the carry bit when the

Figure 1
LDX #8 ; NUMBER OF BITS IN DIVISOR = 8
LDA $40 3 START WITH LSB'S OF DIVIDEND
STA $43
LDA $41 3GET MSB'S OF DIVIDEND
DIVID ASL $43 3SHIFT DIVIDEND, QUOTIENT LEFT 1 BIT
ROL A
CMP $42 ;CAN DIVISOR BE SUBTRACTED?
BCC CHCNT ;NO, GO TO NEXT STEP
SBC $42 ;YES, SUBTRACT DIVISOR (CARRY = 1)
INC $43 3 AND INCREMENT QUOTIENT BY 1
CHCNT DEX ; LOOP UNTIL ALL 8 BITS HANDLED
BNE DIVID
STA $44 3 STORE REMAINDER
BRK
20

Dr. Dobb’s Journal, Number 65, March 1982
m

final ROL is done.

This fact suggests a further improve-
ment in the program. We have noted that
overflow and division by zero are not
checked in this program and therefore
must be checked externally; this takes at
least two instructions, Suppose, however,
that we were to check this in the given
division routine itself. These two instruc-
tions would then be moved into the rou-
tine from outside it, thus causing again,
no change in space requirements. The in-
structions might be CMP $42 and BCS
ERROR inserted just before DIVID.
(This works because the contents of loca-
tion 41 are in the A register at this point.
If the contents of location 42 are less
than or equal to this, the carry will be set,
and we have either the division-by-zero
case, where location 42 contains zero, or
the overflow case.)

Now notice that, in this case, the
nonsense bit, as mentioned above, will al-
ways be zero, because when the first ROL
is done the carry will be clear (otherwise
we branched on carry set). Therefore the
final value of the carry bit will also be
zero, after the nonsense bit has passed
through location 43, On the other hand,
in either of the two abnormal cases, the
carry will be set.

The further improvement is now as
follows, Instead of branching to ERROR
on carry set, we simply branch to the end
of the program. We can now make the
program into a subroutine by adding an
RTS, and since this leaves the carry flag
unaffected, it can serve, in the calling pro-
gram, as an indication of error. Thus, for
example, if the name of the subroutine is
DIV, then JSR DIV followed by BCS
ERROR will serve, in the calling program,

to go to ERROR in either of the error
cases and continue in the normal case.
The program with all these improvements
is illustrated in Figure 2.

If only the initial two changes are
made, the timing improvement will be
5(n=1) cycles, where n is the number of
one-bits in the quotient. The first change
makes no difference; the new ROL takes
5 cycles, outside the loop, while the eli-
minated INC takes S cycles for each one-
bit in the quotient.

»py

Reference

ILeventhal, L. A., 6502 Assembly Lan-
guage Programming, Osborne/McGraw-
Hill, Berkeley, California.

Figure 2
DIV LDX #8 ; NUMBER OF BITS IN DIVISOR = 8
LDA $40 ; START WITH LSB'S OF DIVIDEND
STA $43
LDA $41 ;GET MSB'S OF DIVIDEND
CMP $42 ; SHOULD BE LESS THAN DIVISOR
BCS DONE ; IF NOT, ERROR EXIT (CARRY = 1)
DIVID ROL $43 3 SHIFT DIVIDEND, QUOTIENT LEFT 1 BIT
ROL A ; (AND NEW ANSWER BIT -- SEE DEX BELOW)
CMP $42 | ;CAN DIVISOR BE SUBTRACTED?
BCC CHCNT ;NO, GO TO NEXT STEP (CARRY = 0)
SBC $42 | ;YES, SUBTRACT DIVISOR (CARRY = 1)
CHCNT DEX $NOTE CARRY = NEW ANSWER BIT
BNE DIVID ;LOOP UNTIL ALL 8 BITS HANDLED
ROL $43 s SHIFT IN THE LAST ANSWER BIT
STA $44 | ;STORE REMAINDER (CARRY = 0 HERE)
DONE RTS ;QUIT (CARRY O, NORMAL, CARRY 1, ERROR)

Dr. Dobb’s Journal, Number 65, March 1982
T2

21

